skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xia, Yantao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Addressing sustainable energy storage remains crucial for transitioning to renewable sources. While Li‐ion batteries have made significant contributions, enhancing their capacity through alternative materials remains a key challenge. Micro‐sized silicon is a promising anode material due to its tenfold higher theoretical capacity compared to conventional graphite. However, its substantial volumetric expansion during cycling impedes practical application due to mechanical failure and rapid capacity fading. A novel approach is proposed to mitigate this issue by incorporating trace amounts of aluminum into the micro‐sized silicon electrode using ball milling. Density functional theory (DFT) is employed to establish a theoretical framework elucidating how grain boundary sliding, a key mechanism involved in preventing mechanical failure is facilitated by the presence of trace aluminum at grain boundaries. This, in turn, reduces stress accumulation within the material, reducing the likelihood of failure. To validate the theoretical predictions, capacity retention experiments are conducted on undoped and Al‐doped micro‐sized silicon samples. The results demonstrate significantly reduced capacity fading in the doped sample, corroborating the theoretical framework and showcasing the potential of aluminum doping for improved Li‐ion battery performance. 
    more » « less